Baselining Network-Wide Traffic by Time-Frequency Constrained Stable Principal Component Pursuit

نویسندگان

  • Kai Hu
  • Zhe Wang
چکیده

In this letter, we develop a novel network-wide traffic analysis methodology, named Stable Principal Component Pursuit with Time-Frequency Constraints (SPCP-TFC), for extracting the baseline of a traffic matrix. Following a refined traffic matrix decomposition model, we present new timefrequency constraints to extend Stable Principal Component Pursuit (SPCP), and design an efficient numerical algorithm for SPCP-TFC. At last, we evaluate the SPCP-TFC method by abundant simulations, and show it has superior performance than other traffic baseline methods such as RBL and PCA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Traffic Matrix Decomposition Method with Frequency-Domain Regularization

We propose a novel network traffic matrix decomposition method named Stable Principal Component Pursuit with FrequencyDomain Regularization (SPCP-FDR), which improves the Stable Principal Component Pursuit (SPCP) method by using a frequency-domain noise regularization function. An experiment demonstrates the feasibility of this new decomposition method. key words: Traffic Matrix, Stable Princip...

متن کامل

Structural analysis of network traffic matrix via relaxed principal component pursuit

The network traffic matrix is widely used in network operation and management. It is therefore of crucial importance to analyze the components and the structure of the network traffic matrix, for which several mathematical approaches such as Principal Component Analysis (PCA) were proposed. In this paper, we first argue that PCA performs poorly for analyzing traffic matrix that is polluted by l...

متن کامل

Internet Traffic Matrix Structural Analysis Based on Multi-Resolution RPCA

Abstract The Internet traffic matrix plays a significant roll in network operation and management, therefore, the structural analysis of traffic matrix, which decomposes different traffic components of this high-dimensional traffic dataset, is quite valuable to some network applications. In this study, based on the Robust Principal Component Analysis (RPCA) theory, a novel traffic matrix struct...

متن کامل

A Method for Scalable Real-Time Network Performance Baselining, Anomaly Detection, and Forecasting

Communication is the lifeblood of any business. Today, communication is predominantly facilitated by digital packets transported over the interconnected arteries of the data network infrastructure. It is imperative that this infrastructure is well managed, that unexpected behavior is quickly identified and explained, and that problems are predicted and preempted. Therefore, network performance ...

متن کامل

Quantifying Urban Traffic Anomalies

Detecting and quantifying anomalies in urban traffic is critical for real-time alerting or re-routing in the short run and urban planning in the long run. We describe a two-step framework that achieves these two goals in a robust, fast, online, and unsupervised manner. First, we adapt stable principal component pursuit to detect anomalies for each road segment. This allows us to pinpoint traffi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1302.3422  شماره 

صفحات  -

تاریخ انتشار 2013